
Pertanika J. Sci. & Technol. 26 (3): 1289 - 1306 (2018)

SCIENCE & TECHNOLOGY
Journal homepage: http://www.pertanika.upm.edu.my/

ISSN: 0128-7680  © 2018 Universiti Putra Malaysia Press.

ARTICLE INFO 

Article history:
Received: 29 December 2017
Accepted: 30 March 2018

E-mail addresses: 
sakshichhabra555@gmail.com (Sakshi Chhabra)
ashutosh@nitkkr.ac.in (Ashutosh Kumar Singh) 
*Corresponding Author

OPH-LB: Optimal Physical Host for Load Balancing in Cloud 
Environment

Sakshi Chhabra* and Ashutosh Kumar Singh
Department of Computer Applications, National Institute of Technology, Kurukshetra, Haryana, India

ABSTRACT

Cloud computing has set a trend on a worldwide stage along with the rapid growth to enhance global 
technology standard and market scale in recent years. For the cloud users, load balancing in data center 
networks initiates the necessity of reducing the downtime for migrating overloaded virtual machines. To 
achieve better during-task deployment, optimal physical host must be selected efficiently. Nowadays, 
cloud customers are facing security risks in the context of load balancing of Virtual Machines (VM) 
which is infrequently addressed. This research addresses this pertinent issue and provides a different 
perspective of studying ways to develop VM deployment strategy by reducing the probability of VM 
co-tenancy with their targets. This will in turn make it difficult for attackers to evaluate the strategy. A 
model called Optimal Physical Host for Load Balancing (OPH-LB) is proposed to find the probability with 
probabilistic estimation in the form of its computing capability and performance in secure multi-tenant 
cloud. The proposed solution is evaluated via Cloudsim 3.0.3 and compared with two existing well-
known algorithms. The reported results indicate that OPH-LB outperforms in improving the makespan, 
throughput, performance and reduces the failure number of task deployment. The results show that 
OPH-LB can effectively reduce the risks and security score and upgrades the utilisation of resources, 
with an improvement of 42.13% in all types of analyses for the experimental data. 
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INTRODUCTION

The paradigm of cloud computing reshapes 
all prospective users and is emerging as the 
fastest technology worldwide. It is an eventual 
and promising way of managing and boosting 
the utilisation of resources and delivering 
various computing, IT services (Zissis & 
Lekkas, 2012). In recent years, the number of 
network users has been growing linearly, but 
traffic has been increasing exponentially at 
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cloud data centers (Diaz, Martin, & Rubio, 2016). For this reason, load balancers are essential 
to balance the traffic and that is the reason why overloaded servers are able to process their 
backlog successfully. Virtual machine migrations and balancing the upcoming workload 
based on performance requirements are made possible by virtualisation. This is particularly 
useful when the workload is unpredictable or varies significantly. This XaaS (X-as-a service) 
model in cloud as infrastructure provides service which is parallel to hardware resources for 
its clients, such as Amazon EC2 and Amazon S3 (Ang, Por, & Liew, 2017). Because of the 
inadequate hardware possessions in a cloud system, it has become a big concern as to how to 
allocate the resources securely and choose the best machine for task deployment effectively. 
This will result in a strategy for load-balancing and obtaining reliable performance (Kavousi-
Fard, Niknam, Taherpoor, & Abbasi, 2014). Many companies propose new techniques for fast 
and efficient application deliveries for the deployment of load, as KEMP technologies release 
vRealize Plugins for fast balancer deployments. VMs is also a commonly used resource in the 
cloud computing environment and acts like an isolated computing unit. 

For cloud users, it facilitates the sharing of resources, on-demand resource scaling with 
high flexibility, controllability and predictable performance. However, apart from all these 
benefits, it also brings a new security threat as a number of concerns are emerging regarding 
the issue of multi-tenancy attacks where multiple tenants are residing on the same server. It is 
evident that if attackers and clients reside on the same server, there are more chances of co-
resident attacks (Han, Chan, Alpcan, & Leckie, 2017). At the time of balancing the load, security 
issues are rarely addressed (Chhabra & Singh, 2018). So, a model for VM’s security during 
load balancing and deployment of job requests is proposed. When virtual machines migrate, 
common tenants are concerned about VM placements from one host to strange hosts. Hence in 
this study, the researchers tried to analyse possible threats during load balancing. The general 
view of the cloud data centers is demonstrated in Figure 1. Here, cloud consumers send the 
workload requests for the deployment to cloud service providers (CSPs). The resource manager 
subsequently handles the heavy workload and monitors the whole scheduling of upcoming load 
in the cloud management portal. Then, CSPs divide the resources into fully managed resource 
pool chunks which deliver excellent flexibility and controls. To make changes in the resource 
pool itself is very simple and allocations can be scaled up or down as per requirement.

In facilitating effective usage of computing resources and reduced waiting time, two 
aspects, which are security and load balancing need to be considered (Lin, Chin, & Deng, 2014). 
In this paper, the safety of a VM allocation policy in its ability to defend against multi-tenant 
cloud attacks is measured. These metrics are modeled under basic resource provisioning VM 
allocation policy such as time-shared, and extensive experiments on the widely used simulation 
platform Cloudsim to validate the model. Basically, this new proposed secure load balancer 
policy OPH-LB significantly decreases the co-tenancy of virtual machines on the same physical 
host, but also satisfies the constraints in workload balance and security (Calheiros, Ranjan, 
Beloglazov, De Rose, & Buyya, 2011).
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Significance of the Research

This idea provides a generic formulation which distributes the load effectively to the respective 
servers in cloud data center networks. This can only be achieved by considering the current 
status of requested tasks for the cloud data centers intelligently, which helps to improve the 
efficiency of computing the resources and managing the incoming requests among the physical 
machines securely. This secure load balancer not only significantly decreases the co-tenancy 
of virtual machines on the same physical host but also satisfies the workload balance.

The contributions are threefold:

• To consider the dynamic simulated scenario which helps structured and flexible evaluation 
of the proposed model during secure load balancing. A reliable VMs for task deployment is 
able to diminish the risks from malicious hypervisor and ensures the original performance 
of the load balance.

• To guarantee the scalability of algorithm, no modifications are required in the guest OS, 
hypervisors or hardware platforms. It basically modifies the structure of the model to a 
very less extent by converting a simple load balancer to secure load balancer. 

• OPH-LB achieves relatively accurate estimation with less communication overheads of 
the upcoming load and selects optimal physical host for processing the tasks. 

The subsequent sections of this paper is organised as follows: In section 2, a brief review of 
the related work which achieved secure load balancing in cloud datacenters is offered. Section 
3 introduces the Optimal Physical Host for Load Balancing (OPH-LB). The performance 
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evaluation which was obtained from the practical implementations is discussed in section 4. 
Finally, section 5 concludes the paper and gives future direction of the work.

RELATED WORK

Load balancing is the mechanism which decreases the possibility of VMs to be overloaded or 
underloaded. This leads to improvement in the concurrent user capacity and overall reliability 
of applications and also helps to achieve the best response time and good utilisation of 
resources. The methods of load balancing can be broadly classified into two categories: static 
and dynamic. In the static type of balancing, the prior knowledge of the system is needed and 
cannot change the requirement of resources at the run time because need is fixed before the 
programme execution. In the case of dynamic algorithm, it is based on the current usage and 
gives the facility of re-mapping according to their respective task requirement during run time. 
Dynamic algorithm deals with real-time network and finds the closest server in the whole 
system and prefers the deployment (Cho, Tsai, Tsai, & Yang, 2015). Here the present state of 
the system is used to make decisions to handle the load with the benefits of resource utilisation 
(Li, Qian, Lu, & Wu, 2013). With the aim of improving the performance, redistribution policy 
is applied in which they transfer the tasks from heavily loaded processors to lightly loaded 
processors. Literature search on previous work on optimal task deployment and its possible 
countermeasures has yielded various results. Zhao et al. (2016) proposed a model which 
focused on the selection problem to place the virtual machines optimally for deploying the 
requested tasks to achieve the immediate load balancing effect. The authors applied clustering 
approach with Bayes theorem to choose the optimal set of physical host. It was found that 
this approach improves the throughput, reduces the number of failures and optimises the load 
balancing effect. Domanal and Reddy (2014) implemented the method which ensures the 
usage of resources in an intelligent manner, so efficient utilisation of resources can be done. 
They also compared with previous Active-VM algorithms. Deng, Wu, Shen and He (2016) 
presented the model which combines both static and dynamic provisioning and makes the 
online power management system which helps to save power and reduce the operating cost 
of carbon emmissions of the data centers. Its algorithm is to adapt the usage of green data 
centers powered by renewable energy called EcoPower which performs better load balancing 
and eco-aware power management simultaneously (Deng, Lu, Lai, Luan, & Liang, 2016). Its 
main objective is to diminish the average time and cost without any compromise on quality. 
So, this system’s performance proves that this model achieves a good balance between power 
savings, cost and quality. The cost can also be reduced by 20% and can use solar or wind 
complementary strategies for further purposes. An optimisation of virtual machine placement 
for energy efficiency algorithm was also proposed by Li et al. (2013) based on evolutionary 
population initialisation strategy which helps to minimise energy consumption and maximise 
load balance. This model is evaluated with many-objective optimisation problems (MaOPs) 
with energy consumption reduced to 23.01 kWh with a percentage of 0.00029 and minimises 
the 770 number of VM migrations.

The cross VM side channel attacks introduced by Martin (2010) proposed the fine-grained 
information extraction between VMs. They mapped the internal cloud infrastructure, where 
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a particular target VM and attacker VM was likely to reside in one physical machine. This 
approach is mainly focused on mitigating the side channel risks and employs the blinding 
techniques to minimise the information that can be leaked. An approach proposed by Zhang, 
Juels, Reiter and Ristenpart (2012) basically deals with extraction of fine-grained information 
from a victim VM running on the same server. These types of attacks happen on a symmetric 
micro processing virtualised system. Their algorithm is able to overcome a few problems: filter 
out numerous sources of noise, core migrations and extract the victim’s key. There is a technique 
which helps to mitigate the arbitrary cloud side channel attacks which is recommended by 
Moon, Sekar and Reiter (2015). They presented “Nomad”, a system that suggests vector-
agnostic defense against known and future side-channels. It captures information leakage model 
by channels and required migration heuristics between VMs in shared cloud deployments. 
Sun, Shen, Li and Wu (2016) presented the model for analysis related to security threats and 
generated an information leakage model to secure the load balancing risks. This SeLance 
technique estimates and predicts the information leakage in the whole process during VM 
migrations and VM placement. Some researchers only focus on a particular threat suggested 
by using VM allocation policies to defend against co-resident attacks in cloud computing (Han 
et al., 2017). They basically follow three metrics: efficiency, coverage and VMmin. Their work 
satisfies these objectives such as security, workload balance and power consumption. Duan 
and Yang (2017) implemented the method which generates multi-tenancy oriented private 
clouds and allow multiple VMs to communicate with others under physical hosts. They have 
achieved global load balancing on the underlying physical networks. To attain efficient resource 
provisioning by optimal workload allocation is also studied in light of the max-min algorithm 
by Cao, Li and Stojmenovic (2014). Other solutions for secured load balancing with many 
techniques are by Papagianni et al. (2013), Ramezani, Lu, and Hussain (2014), and Zhao, Hu, 
Ding, Xu, and Hu (2014).

OPH-LB

Proposed Scenario and Assumptions

In IaaS cloud data centers to improve utilisation of resources, CSPs places the VMs which 
relates to different tenants in one physical host. The respective VMs share the host’s resources 
and cloud service providers make sure the isolation between each VMs. In this multi-tenant 
cloud, there are chances of coinciding of VMs attacks. So, the objective of this study is to 
choose the optimal physical host for deploying the tasks in this secure cloud environment. 
When clients submit their job requests in resource pool of the cloud data centers, it generally 
chooses the physical host randomly for deploying the tasks as illustrated in Figure 2. However, 
it can become optimal if we can decide the most favorable machine for a particular task and 
will create a better load balancing effect. This idea will surely improve resource utilisation 
and provide high throughput. At the time of allocating tasks, firstly we need to check if the 
amount of resource requested by a task is greater than the available resources, then the physical 
host cannot deploy the task. When available memory is greater or close to the requested 
ones, then it can only deploy the tasks effectively. Whether it is possible for several physical 
machines to deploy the same task, we still need the physical host which is optimal among all 
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physical machines. As we know, parallel computing systems have many processors which 
run simultaneously and are scattered in multiple locations. For reducing the communication 
overheads between processors and to obtain the best scheduling performance, a hybrid system 
topology is pursued. At the time of finding a physical host which is the most favorable, we 
don’t need to go and check for each and every processor because there is an index table named 
as DUIDX which preserves all information and estimations, and helps the load manager to 
maintain the records and reflect about any changes in the deployment time. When new jobs are 
coming in the system, then the load manager chooses the most optimal host for deployment 
so that communication overheads are reduced substantially.

9	
	

load balancing effect. This idea will surely improve resource utilisation and provide high 

throughput. At the time of allocating tasks, firstly we need to check if the amount of resource 

requested by a task is greater than the available resources, then the physical host cannot deploy 

the task. When available memory is greater or close to the requested ones, then it can only 

deploy the tasks effectively. Whether it is possible for several physical machines to deploy the 

same task, we still need the physical host which is optimal among all physical machines. As we 

know, parallel computing systems have many processors which run simultaneously and are 

scattered in multiple locations. For reducing the communication overheads between processors 

and to obtain the best scheduling performance, a  hybrid system topology is pursued. At the time 

of finding a physical host which is the most favorable, we don’t need to go and check for each 

and every processor because there is an index table named as DUIDX which preserves all 

information and estimations, and helps the load manager to maintain the records and reflect 

about any changes in the deployment time. When new jobs are coming in the system, then the 

load manager chooses the most optimal host for deployment so that communication overheads 

are reduced substantially. 

 

Figure 2. Requesting Jobs into Physical Hosts for Deployment in IaaS 

 

This strategy is effective in high throughput with favourable scalability and less communication 

overheads. In multitenant cloud, attackers are always trying to achieve economic gain by 

utilising virtualisation and allow resource sharing. It occurs when two or more customers are 

using the same physical machine's services given by cloud service providers at one time. These 

Figure 2. Requesting jobs into physical hosts for deployment in IaaS

This strategy is effective in high throughput with favourable scalability and less communication 
overheads. In multitenant cloud, attackers are always trying to achieve economic gain by 
utilising virtualisation and allow resource sharing. It occurs when two or more customers are 
using the same physical machine’s services given by cloud service providers at one time. These 
risks come when both the attacker and clients are in the same cloud and are sharing the same 
server. In order for multi-tenancy, both virtualisation and resource sharing must be allowed 
by cloud service providers as shown in Eq. (1).

                 (1)
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Here, resources are being shared between attackers and customers. Although the difficulty of 
deploying co-tenant VMs is actually reduced by load balancing, multi-tenancy threat occurs 
when the attacker and the target victims are in the same cloud and are sharing the same physical 
host. Given this better and secure load balancing scenario, the new strategy should satisfy 
these three main objectives:

Workload Balance - The importance of balancing the workload is twofold: For cloud providers, 
distributing VMs over multiple processors have to improve the whole parallel performance in 
the cloud. In the research policy, all the requesting tasks are not allocated together on the same 
server at one time. These providers adjust the workload periodically and dynamically so that 
all running tasks of different locations will complete their execution on time, so that idle time 
is minimised and resource utilisation can be maximised.

               (2)

Computing Efficiency - How to effectively use the computing resources is a critical issue 
for cloud providers. There are many different techniques that have been widely discussed in 
various research papers (Zhang, Chong, Pezeshki, Moran, & Howard, 2017). However, there 
is yet to be a 100% foolproof solution. Therefore, here, the most straightforward approach 
is considered to pick out the most optimal hosts set and minimise the extra running servers. 

                (3)

Secure Physical Host - The ability to optimise and secure the cloud service performance is of 
great importance and selects the most optimal physical host to reduce unnecessary computing 
resources. Based on minimum resource utilisation and less communication overhead between 
hosts in secure environments, a way to dynamically produce the best load balancing with low 
computation complexity is allocated as legal and attackers can’t deploy the tasks to the same 
physical host. Based on such idea, he average number of clients per physical host is minimised.

                 (4)

These targets have determined and accomplished in the analysis and simulation output of this 
paper. In addition, the following assumptions are made:

➢ The available CPavl, MeMavl and requested CPrqs, MeMrqs capacity of the physical hosts 
should be known by the load balancer manager and stored in DUIDX index table. However, 
when a new request is being processed, only the favorable physical hosts with adequate 
resources left are considered. In other words, designing an algorithm to find the optimal 
host with less communication overhead is the focus of this study. 
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➢ This multi-modal optimisation considers two objectives: CPU utilisation and memory. It 
is done for every incoming task requests when it arrives in the cloud data center, so that 
only current system capacity state and task requests are taken into consideration.

➢ A dynamic environment for implementing this approach is considered in order to reduce 
unnecessary computation complexity and assure optimal balancing effect.

➢ Cloud Service Providers (CSPi) don’t have foregoing knowledge of the attacker’s capability 
and requests are considered identically. VM live migration is taken into consideration 
because when attack launches, intrusion detection system notices automatically. It is known 
when the current working VM is in secure or insecure state.

METHODS

Architecture

The proposed problem of task deployment can be formulated with the following scenario: In 
a cloud paradigm of Nclients £= {C1,C2,…,Cn}, R job requests ¥ ={Jr1,Jr2,…,Jrr} requesting 
to p physical hosts □ ={PH1,PH2,…,PHp}. A mapping €: £ ×¥→□ allocates each physical host 
from each user with specific job requests, €£×¥×□={€C,Jr,PH|€C,Jr,PH=1 if job request Jr of client C is 
allocated to optimal physical host}. This obtained solution vector mapping € is the deployment 
strategy and used to conclude which task will be deployed into which physical host (PHp), and 
should be in secure state. The nomenclature of these notations is described in Table 1. These 
hosts are assumed to be heterogeneous and implemented in dynamic environment. When 
cloud data centers receive the request for deploying the tasks, then the OPH-LB problem is 
formulated in a stochastic framework to find out the final deployment strategy by utilising 
its algorithm mechanism. This problem for load balancing can be solved through optimising 
task deployment problem in every ∆t time from a long perspective. The tuples are defined in 
□={Jr,PH,Cn,CPavl,MeMavl,CPrqs,MeMrqs,E}. These Jrr defines the job requests which comes 
for deploying their tasks from {i=1,2,…,r}. PH illustrates the set of available physical hosts 
PH(p,tm) ={PH1,PH2,…,PHp}, where tm represents the starting time for deploying the tasks. 
These CPavl, MeMavl parameters discuss the current available CPU and memory resource amount 
of the p physical host in the set  and  
and MeMrqs is the requested resource amount by clients for deploying the r tasks in Jr.
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The goal is to protect the multi-tenant cloud in this way so that co-resident attacks never harm 
any physical host. A binary variable  indicates VMi will be placed on php and 0 otherwise. 
The load placement matrix is defined as T. Let Ti,j be an element of matrix T, then Ti,j defines 
the load placement between VMi and VMj. It should be noted that a feasible VM placement 
decision should satisfy the following resource constraints:

                   (5)

                   (6)

Eq. (5) and (6) ensures that the total required consumption of processors and memory resource 
amount should not exceed its total capacity. For avoiding the overflow condition of the node 
servers, we have the following load constraint:

                  (7)

where Bs denotes the bandwidth of servers st. The coefficient (1/2) defines the VM placement 
pair of respective servers, the load is calculated two times. It guarantees that each task is 
allocated in one VM as respective physical host with specific requests. This VMi(t) is defined 

Table 1 
Description of notations to be used   

Notation Description
Cn Number of Clients
£ Set Set of clients {1,2,…,n}
¥ Set of Job Requests {1,2,…,r}
€ Specifies mapping between hosts, job requests and clients
□ Octatuple
PHp Number of Physical hosts
CPavl,MeMavl Available resource amount of CPU and Memory
CPrqs,MeMrqs Requested resource amount of CPU and Memory
SR Set of servers {1,2,…,s}
VMi(t) VM i which is located by tenant t
VMi’(t’) VM i’ which is located by tenant t’ malicious one
WB Workload Balance
SPH Secure Physical Host
CE Computing Efficiency
RD Random Deployment
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as VM i which is located by tenant t and VMi’(t’) as VMi’ located by tenant t’ which is called 
malicious one. This Co-Tenantt,i,t’,i’(ξt) represents a Boolean value which defines whether any 
VMi(t) and VMi’(t’) are Co-Tenant at time ξt. As the main goal is to reduce the leakage introduced 
by Chhabra and Singh (2016) or insecure states which occur during this proposed process, a 
secure load balancing policy is designed where resource manager allocates the tasks effectively 
so that optimal VM is selected and placed successfully. For each strategy, when the upcoming 
load comes for deployment, the secure or insecure states are calculated and predicted for every 
decision. When clients (Cli) send their workload job requests to the resource manager, OPH-
LB model identifies the reliable or unreliable states. It maintains a collection of all possible 
VM(VMi) as in Eq. (8) to be selected and placement at first. Then, it calculates the secure or 
insecure states for all feasible migration paths. As the system has less insecure states, it should 
have more security advantages during the deployment of requested jobs. In case of safe states, 
the qualified hosts as required and available amount of resources are observed. The safe VMs 
are returned to the resource manager who will make the final decision, in appraisal of both 
security and load balancing, as illustrated in Figure 3.
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upcoming requests are deployed securely or not. For safe states, some conceptions have been 
initiated accordingly. Firstly, the reliability of particular tenants is estimated with the help of 
Co-Tenancy between those clients in historical time ξt. THRS time to find the malicious VMs 
from all the co-tenant VMs is considered when VM P and VM Q have been co-tenant in the past 
ξt times and resides parallel for more than its threshold time THRS. When the intrusion detection 
system doesn’t ring an alarm, then we can generally think that both VMs are favourable to 
each other and there is no maliciousness between them as shown in Eq. (8) (9); these machines 
are ready for the deployment of tasks. For the trusted hosts, intrusion detection system needs 
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THRKH time for finding the position of the hypervisor whether it is able to deploy the VM’s 
tasks. If VM P is migrated to host R, in the past ξt times and P has been co-tenant in host R 
for less than THRKH then R is unknown host to P and it can be the malicious one, otherwise it 
is called Known Host as in Eq. (10)

                 (8)

                (9)

             (10)

These equations help to observe the most favourable physical hosts which help to save the 
resources for the further deployments productively. By using probabilistic model (Chhabra & 
Singh, 2018), accurate estimations are calculated which depend on the particular set of data. 
The filtered ones are called favourable qualified sets (FQPH).

         (11)

where  are the parameters, that is, CPU and Memory. For every host there should be fixed 
parameters of this function:

             (12)

Where ; denotes separation between two types of input. This equation demonstrates and helps 
to calculate the probability of each host for handling tasks. It assists in finding the qualified 
sets which meet the performance constraints. Tasks to particular hosts have been filtered out 
and assigned for the deployment which has maximum probabaility.

                (13)

where fq is qualified set. Ri and Ci defines the requested and capacity computing power of CPU, 
Memory. Now, the maximum probability among all favourable qualified sets can be calculated. 

                (14)

Finally, the tasks are placed on that host for deployment in cloud data centers for executing tasks. 
For convenience, the operational summary of the proposed model is mentioned in Algorithm 1.
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RESULTS AND DISCUSSION

Experiments are conducted with performance and efficiency of the proposed solution and 
evaluated by considering dynamic creation via Cloudsim simulation environment. It is 
extremely difficult to examine these long-term experiments on real infrastructures and compared 
with the proposed technique. OPH-LB is compared with other two well-known methods 
applied in the literature against the corresponding performances: Random Deployment (RD) 
and Dynamic Load Balancing (DLB).

Algorithm 1 
Initiation: Requesting the jobs by clients for secure load balancing in Multi-tenant cloud.
Output: Searching for secure and optimal physical host.
1: PHList={}, QPHList={}, FQPH={}
2: For each client’s CLn job request do
3:

4: end for
5: if  then 
6:        if  then
7: QPHList.add(PHp)
8: else
9: PHList.add(PHp)
10:        end if
11: end if
12: if two VMs are co-tenant in  times then
13:

14: FQPHList.add(PHp)
15:

 
16: end if
17: secure states found
18: for each physical host ϵ FQPHList do
19:       the probability estimation applies only on favorable qualified physical hosts 

PH
20:

 
21: end for
22: for each find the maximum oneamong all out of favorable qualified sets do
23:

 
24: end for
25: return secure optimal host
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Experimental Setup

The simulated cloud network is considered for achieving realistic results. The evaluation is 
conducted on 100 physical machines with different configurations which can efficiently fulfill 
the requirements of upcoming load simulation conditions. Every physical machine has its own 
VMId which increases/decreases according to this deployment of cloudlets in dynamic nature. 
In the space-shared, the machines are partitioned into a set of clusters and every cluster is 
allocated as a single job and shares the memory space. In time-shared, the computing power 
is divided by many users and each job runs for a quantum of time. The completion time is 
compared during analysis of the cloudlets in time-shared and space-shared allocation policies. 
These 100 physical machines have different available computing resource amount of CPU 
and Memory. There are 50 cloudlets running continuously on these physical machines. The 
information captured on these machines and tasks on the global blackboard of the OPH-LB 
is summarised in Table 2. Some parameters are defined in the range because of the different 
configurations used for every physical machine.

Makespan

Makespan is calculated by the difference between start time and fininsh time for processing the 
tasks during scheduling. When we assign the workload requests to physical hosts, it is mainly 
used during context switching. The processing time increases with increase in the number of 
requested tasks. As can be seen from Figure 4, this method is analysed and compared with 
the RD and DLB approaches. In Random Deployment (RD) scheme, it processes the tasks 
randomly in the cloud data centers. If the number of requested tasks increases and is randomly 
selected, the capacity of handling that volume of tasks will also weaken. This DLB approach is 
basically based on the prediction model and is built on some repository knowledge or historical 
experience. The total processing time of these strategies is always greater than OPH-LB method. 
It is because OPH-LB method can quickly find the optimal host based on the required resource, 
so that it has a smaller makespan among all under the same conditions. It also saves the cost 
of utilisation of resources and indirectly saves power consumption for cloud data centers.

Table 2 
Parameters used in simulation  

Parameters Value
Host Memory 204800
Host Storage 10000000
Host Bandwidth 100000
System architecture x86
Operating system Linux
MIPS 250-350
VM Image Size 1000-5000
VM Memory (RAM) 2048 MB
VM Bandwidth 1000-2000
VMM Name Xen
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Failure of Number of Processing Events

In this evaluation, the number of failure tasks is found by the cloudsim simulator during 
scheduling and deploying the tasks. The finding of these failure nodes in the dynamic 
environment can only be possible if the chosen physical machine is unable to fulfill some of 
the demands of requested tasks. When the number of requested tasks increases, chances of the 
number of failures increases gradually because the ability of handling tasks will weaken slowly. 
As shown in Figure 5, the framework approach is compared with other existing techniques based 
on the failed number of tasks during deployment in the simulated cloud network data center. 
In this figure, RD approach has so many failure sets of tasks because it deploys randomly and 
in DLB there is less failure than RD because of its knowledge repository experimental values. 
But these sets of failure cannot manage in the real time. In the case of OPH-LB the analysis 
shows that the quantity of failure is less and in the plotted experiment, up to 43 requested tasks 
have no failure node (when tasks = 100, just <15 or few failed tasks). To sum up, the OPH-LB 
has better solidity and effectiveness for large-scale cloud data centers.
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Throughput Performance

This evaluation measure mainly uses an effective measure of load balancing to analyse and 
evaluate whether it is good or bad in terms of its service performance. These effective measures 
mainly include the ability of dealing with tasks, the response time to calculate a task request and 
the number of completed services per unit time. Based on these parameters in cloud system, we 
can calculate the throughput rate and evaluate the external service performance with respect to 
increasing time. In this study, the throughput among various numbers of requested tasks was 
calculated by taking cloudlets as 1000, 2000, 3000 and 4000 as shown in Figure 6.
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In this experiment, the succeeded throughput for measuring the performance of requested tasks 
has been illustrated, except the failure number of nodes. The result in Figure 7 shows that 
throughput based on succeeded cloudlets gives much better execution than the above result. 
It also helps to improve the resource utilisation of the cloud data center effectively.
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Number of Requested Tasks under Normal State and Secure State

Figure 8 illustrates cloudlet completion time in time-shared scheduler policy for their respective 
tasks. When tasks increase from 100 to 1000, the time taken by the cloudlets for task completion 
also increases. At n = 100, 75% of cloudlets complete their processing in time = 160.2 s while 
at n = 800, only 6% of cloudlets complete their processing in t = 160 s and remaining 94% 
cloudlets complete their processing in 320.6 or 480.8 s respectively in normal state. Figure 
9 shows that some of the cloudlets complete their execution more than 640.8 s but it is quite 
secure than the previous graph. It shows that even thought it takes more time, it ensures the 
clients share the resources without any insecurity.
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CONCLUSION

This paper provides a new perspective of task deployment to see the positive effect for secure 
load balancing. This paper propose an improved solution by using probabilistic model for 
effective utilisation of resources to provide the service of clients in cloud data centers. Its main 
purpose is to research and design a novel secure LB policy OPH-LB, to calculate and predict 
the secure or insecure states for every possible decision of VM selection and VM placement. 
It certainly reduces information leakage during load balancing and improves security benefit 
in the cloud. The simulation results show that OPH-LB has many benefits such as it reduces 
failure rate, shows improvement in throughput, decreases the makespan time, upgrades the 
utilisation of computing resources and boosts the external service performance too. 
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